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SUMMARY 
A nearly uniform shear flow was obtained in the working 

section of a wind tunnel by inserting a grid of parallel rods with 
varying spacing. 

The function of such a grid is to impose a resistance to the 
flow, so graded across the working section as to produce a linear 
variation in the total pressure at large distances downstream 
without introducing an appreciable gradient in static pressure near 
the grid. A method of calculating a suitable arrangement of the 
rods is described. Although this method is strictly applicable 
only to weakly sheared flows, an experiment made with a grid 
designed for a shear parameter as large as 0.45 gave results in 
close agreement with the theory. There was no evidence from 
the experiment of any large-scale secondary flow accompanying 
the shear-a danger inherent in an empirical attempt to grade the 
resistance of the grid-nor was any tendency observed for the 
shear to decay with increasing distance from the grid. 

1. INTRODUCTION 
A simple method of obtaining a two-dimensional shear flow u(y)  with 

vorticity w, in a wind tunnel is to insert near the beginning of the working 
section a grid of parallel rods in which the distance between adjacent rods 
varies in the y-direction, as sketched in figure 1.  The effect of such an 
arrangement is clearly to produce a grading in the resistance of the grid 
which in turn gives rise to a non-uniform (irrotational) flow upstream of 
the grid and a non-uniform distribution of total pressure downstream of it. 
If it were possible to select a resistance grading such that the gradient of 
total pressure far downstream of the grid were constant, the vorticity w- 

would also be constant. 
In  principle it should not be difficult to devise empirically a grid which 

satisfies approximately the above condition on total pressure gradient 
(a remark on the feasibility of realizing it in practice is made in § 5 ) ,  but 
such an approach carries with it the danger of introducing secondary 
vorticity components w,, wy since the variation of total pressure near the 
downstream face of the grid might include large static pressure gradients. 

The method of grid design described in this paper has as its purpose 
the calculation of a resistance grading corresponding to a constant total 
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pressure gradient far downstream together with a predictable and, if possible, 
small static pressure gradient near the grid, and is applicable to weakly- 
sheared flows in the sense that the maximum change in velocity across the 
wind tunnel is small compared with the mean velocity. 

On the basis of the method, a particular grid was designed and tested 
in a wind tunnel with a working section 20 in. square at a mean speed, 
near the tunnel axis, of approximately 75 ft. sec-l. Static pressure and 
Pitot pressure traverses across the working section at a number of stations 
downstream of the grid revealed, over a large part of the area, an approxi- 
mately linear velocity distribution, u(y), which was almost invariant with 
both x and z. Furthermore, the static pressure was found to be sensibly 
constant over planes parallel to the grid at distances from it of one tunnel 
width and greater ; the region in the immediate vicinity of the grid could 
not be explored with a conventional static probe for reasons explained 
in $5. 

-U 

J' 
Figure 1. Arrangement of the grid and coordinate system. 

One of the objects of producing a shear flow on a large scale is to examine 
the flow about bodies in a stream of uniform vorticity, and thereby to 
undertake the experimental counterpart of theoretical investigations made 
principally by Hawthorne & Martin (1955) and Lighthill (1956). It is 
hoped to report later on the results of these experiments. 

2. METHOD OF GRID DESIGN 

The wind tunnel may be treated as a long channel with walls y = 0, 
y 7 h, in which a grid is placed in the plane x = 0. At great distances 
upstream the velocity is uniform and has the value U ;  far downstream 
the velocity is again parallel to the walls and its magnitude is given by 

u = U+A(y-$h). (1) 
We suppose the fluid is inviscid and that AhlU is so small that the 

departure of any streamline from a straight line is correspondingly small. 
Accordingly, the stream function may be written 

* = UY+Y,  x < 0, 

= Uy+&A(y2-hy)++', x > 0, (2) 
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where I,$’, which is everywhere small compared with Uh and tends to zero 
as x +  co, satisfies V2+‘ = 0. Appropriate solutions satisfying the 
boundary conditions 

for all x are 

m 

= 2 B, e--@‘ sin(n.rry/h), x > 0. (3) 
%=1 

The presence of the grid requires that (i) a+/ay is continuous through 
x = 0, (ii) the velocity component aI,$/ax obeys a certain refraction condition 
across x = 0, and (iii) the difference between the total pressures on a given 
streamline for large positive and negative values of x must be equal to the 
resistance per unit area imposed by the grid. T o  these may be added the 
condition that the static pressures far upstream and far downstream of the 
grid are independent of y. 

Condition (i) leads to 
m m 

r 2 nA, cos(n.rry/h) - .rr 2 nB,, cos(n.rry/h) = 
n= 1 n=l 

or, setting W 

$y(y- h) = h2 2 C, sin(n.rry/h), 
n= 1 

A, - B, = C, hh/U. (4) 
The refraction condition (ii) requires the y-component of the velocity 

to change by a factor u in passing through the grid. u for a grid of uniform 
resistance is known to be 1-1( 1 + K)--lj2, where K is the resistance coefficient 
(Taylor & Batchelor 1949), and it is unlikely that this value will be seriously 
in error for a grid with slightly graded resistance provided that K is given 
its local value. It follows that, if the resistance grading is represented by 

K = Ko[l ++)I, such that E is small and 

K r l E  ] + O(E2). 
= (l+Ko)”l[l- 2(1+K”) 

1.1 

With cc given by (5), the refraction condition is 
W W 

2 nB, sin(nny/h) + (a +be)  2 nA, sin(n.rry/h) = 0, 
n = l  n = l  

which, noting that A ,  and B ,  are O(hh/U), reduces to 

B, + uA, = 0 + O(XhE/ U ) ,  

where a = 1.1(1 +Ko)-1’2, 
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Finally, we have to consider the change in total pressure along a 
streamline. According to the assumption of an inviscid fluid, the total 
pressure remains constant along streamlines upstream and downstream 
of the grid but, at the grid itself, there is a decrease in total pressure 
amounting to K+p[u(0)12. Hence, 

where p ,  and p ,  are respectively the static pressures far upstream and far 
downstream of the grid. The streamline which has the ordinate y1 for 
large x meets the grid at y = yo, and the relation between yo and y 1  follows 
from (2) ; 

Equation (8) implies that, to the first order in Ah/U and $/Uh, the 
x-component of the velocity at the grid is given by 

p ,  + :p U2-p1 - 1 2P[U+A(YI-- 4h)l2 = f4p[u(0)12, (7) 

Y1 = Y o + ~ ’ ( o , Y o ) l ~ +  O(A#’/U2). (8) 

which, together with (7), leads to 
Ah 

= Ko(l+.)+2-(1+Ko) 
q p  u2 U 

Since ( p o - p , )  is independent of y ,  (10) resolves into 

The distribution .(yo) follows directly from (12) if we note from (3), (4) 
and (7) that 

hence, 

This result could have been arrived at without introducing the Fourier 
series, but the series representation (3) is useful for calculating streamlines 
and pressures away from the grid. 

3. PRESSURES ON THE FACES OF THE GRID 

Equations (9) and (13) demonstrate that, of the ultimate perturbation 
A(y- +h)  to the velocity in the channel, a fraction l/(l +a)  appears at the 
grid and is produced irrotationally in the flow upstream. Clearly, as a 
approaches zero, a condition which could be realized by making KO very 
large, a progressively greater proportion of the velocity adjustment is 
achieved before the flow reaches the grid ; consequently the static pressure 
on the downstream face of the grid must tend to a constant value consistent 
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with a uniform distribution of vorticity oc. (The static pressure on the 
upstream face will, of course, not be constant and we shall refer to its effect 
presently). Whilst the implication of this argument is clear enough as a 
criterion for avoiding the development of secondary circulation in the flow 
downstream of the grid, it is not very helpful in practice because there is 
always a limit to the value of the resistance beyond which a useful per- 
formance cannot be obtained from the wind tunnel in which the grid is 
placed. 

To explore the possibility of a compromise between constancy of static 
pressure in the plane x = + O  and a tolerably small value of KO-approxi- 
mately 1, say-note that the pressure on the downstream face of the 
grid is given by 

Although (15) shows that the pressure coefiicient departs from a constant 
value only by O(hh/U) when KO, and therefore a, are 0(1), it cannot be 
inferred immediately that such a pressure variation is acceptable unless the 
associated secondary vorticity, ws,  is of a still smaller order of magnitude ; 
for the primary (non-dimensional) vorticity wz h/U induced by the grid is 
itself only O(hh/U). 

The development of secondary vorticity arises from the action of the 
pressure gradient ap/ay on the fluid in the boundary layers on the tunnel 
walls at z = k i h .  Such fluid, on account of its reduced velocity in the 
x-direction, more readily acquires a motion in the y-direction in 
response to the pressure gradient than the faster-moving fluid in the main 
stream. Once a cross-flow is well-established in the boundary layers a 
compensating flow must appear in the main stream in order to preserve 
continuity, and it follows that, if the maximum cross-flow velocity in the 
boundary layers is TI‘, the secondary vorticity in the main stream will be 
O(u’6/h2), at  most, where 6 is the boundary layer thickness. 

Now the maximum value of the pressure gradient ap/ay is, from (15) ,  
pUAa/(l+ a)  on the downstream face of the grid, and it falls off with x like 
e-nz’h. On the assumption of laminar boundary layers on the walls of the 
tunnel (it is known from experiments with curved pipes that the secondary 
flow in these circumstances is more powerful than when the flow is turbulent), 
a rough argument based on consideration of the balance between the flux 
of boundary-layer momentum in the y-direction and the combined forces 
due to the pressure gradient and skin friction indicates that the maximum 
value of v’ attained some small distance downstream of the plane of the grid 
is O(Xh). It follows that w ,  is O(h6/h) at most and, owing to the presence 
of the small factor 8/12, is of an order of magnitude smaller than wz. Since 
the boundary layers downstream of a grid are certain to be turbulent in 
any apparatus of useful dimensions, the mean resistance may safely be 
confined to values near 1. 
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Turning our attention to the flow upstream of the grid, we notice that 
any attempt to ameliorate the pressure gradient at x > 0 by increasing KO 
will result in an increased pressure gradient at x < 0, for the maximum 
values of ap/ay, which occur on the faces of the grid, are related by 

and so the danger of inducing a secondary circulation is merely transferred 
from x > 0 to the region x < 0. We have however already rejected the 
use of large KO on the grounds of wind tunnel performance, and it remains 
to consider the suitability of values of KO near 1.  The problem can be 
disposed of quickly by appealing to the arguments of the preceding 
paragraph. The conclusions reached there hold equally well for the region 
x < 0, with the reservation that the increased severity of the transverse 
pressure gradient in the flow approaching the grid (a < 1 for KO = 1) 
will be offset by the smaller boundary layer thickness on the vertical walls 
and by the attenuating action of the grid on any secondary vorticity that 
happened to develop. 

4. RESISTANCE GRADING 

At large Reynolds numbers the resistance of a grid of rods in a uniform 
stream can be predicted with good accuracy if the drag coefficient based 
on the blocked area and the average interstitial velocity is taken to be 1 
(Wieghardt 1953). For our present purpose it will be assumed permissible 
to adopt the same procedure for each portion of the grid, with the possible 
exception of places where the spacing changes rapidly with y, since the 
scale of variation in the y-direction of the velocity through the plane of 
the grid, u(O), is much larger than the greatest spacing between adjacent 
rods. Accordingly, KO( 1 + c) = f (  1 - f ) -2 ,  where f = d/s ; d is the diameter 
of each rod and the spacing is s(y). With E given by (14), 

- f = Ko[l-2;(&+ &)@-;)I. 
(1 - E l 2  

It  will be observed from (16) that the choice of KO is not entirely arbitrary, 
since for each value of KO there is a maximum value of hh/U which can be 
reached with a physically-realizable grid. This maximum, which is given 
in the following table, is governed by the condition that f > 0 at y = h. 

____- 
(hhiU),,,, 0.18 0.33 0.45 0.56 0.64 

5. EXPERIMENT 
A grid composed of parallel rods of 0.125 in. diameter was constructed 

according to (16) with XhlU = 0.45 and KO = 1-15. A conservative choice 
of KO, as compared with the values shown in the table above, was considered 
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desirable in order to  avoid unduly rapid rates of change of the rod spacing 
with y near y/h = 1. T h e  appropriate values of f are shown in figure 2, 
which also contains the values measured on the centre-line, z = 0, of the 
grid aftei grid after it was built. 

Figure 2. Spacing of the rods; ___ design values of 6, - - o - - o - - measured 
values on the grid centre-line. 

Figure 3. Calculated streamline pattern for AhjU = 0.45 and KO = 1-15 .  

The  grid was placed at the entrance to the working section, 20 in. 
square, of the low-turbulence wind tunnel at the Mechanics of Fluids 
Laboratory. Traverses across the working section in planes parallel to 
the grid at a number of distances from it were made with Pitot and static 
tubes of 1 mm outside diameter at a mean windspeed U of roughly 
75 ft. sec-1. 
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No variation in static pressure could be detected from the traverses, 
which were confined to distances greater than approximately one tunnel 
height from the grid. T h e  grid could not be approached much more 
closely with a conventional static probe owing to an appreciable inclination 
and curvature of the streamlines, the predicted pattern of which is shown 
in figure 3 .  

110 

I 1 

Figure 4. Velocity contours in the plane x / h  = 3 ; - measured, 
calculated. _ - - _ _  

The  contours of u/U as deduced from the Pitot and static pressure 
traverses in a plane parallel to the grid and 5 ft. ( x / h  = 3 )  downstream of 
it are shown in figure 4. T h e  absence of any systematic departure from 
lines parallel to the z-axis, together with the previously-mentioned fact 
that the static pressure is constant over the region, suggests that no secondary 
flow was present on a large scale. 

The  profiles of u/U in the plane of symmetry of the tunnel, y = 0, 
at distances of 2, 5 and 7 ft. from the grid (x /h  = 1.2, 3-0, 4.2) are presented 
in figure 5. The  most striking feature of this figure is the close agreement 
between the measured velocity distribution and that predicted by the theory : 
an agreement which is remarkable in view of the fact that the grid was 
designed for a value of hh/U of 0.45, which could hardly be accepted as 
small enough to come within the scope of a linear theory. T o  be sure, the 
presumed effects of neglecting squares and higher powers of XhlU can be 
interpreted in the experimental velocity profile as a deficit in the average rate 
of shear together with a small departure from linearity, although the latter 
effect is equally likely to be due to an inadequacy in the method of relating 
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the spacing of the rods to the local resistance. (The curvature of the velocity 
profile in figure 5 is most marked in the interval 0.70 < y / h  < 0.95, where 
according to figure 2, ( changes rapidly with y/h.) 

The small-scale irregularities in the velocity profile, which were found 
to be repeatable in the experiments, can be attributed to inaccuracies in 
the manufacture of the grid, as displayed in figure 2, and a detailed- 
examination of the measurements (not all of which, for the sake of clarity, 
are reproduced in figure 5) suggested that the small amplitude waviness 

Figure 5.  Velocity profiles measured in the plane of symmetry of the tunnel. 

of the velocity profile in the region y /h  < 0.5 could be associated with the 
corresponding abrupt fluctuations in 5. I n  particular, the pronounced 
dip in the velocity profile near ylh = 0.5 might be caused by the error in E 
at roughly the same value of y / h ;  for it is easily shown that the change 
in u/U brought about by a small change in 4 in the interval 

y-&Ay < y  <y+BAy 

provided that outside the interval is altered by a constant amount so as 

to preserve the condition J;dy = 0. In the present case, with KO = 1.15, 

a = 0.75 and A t  + 0.015, (17) gives Au/U =i= -0.03 which is near to the 

* This relation offers the possibility of an iterative method of designing the grid, 
by adjusting 6 to compensate for the differences between the required velocity 
profile and that observed in an initial experiment. Such complication was not 
considered necessary for the case considered here, although in choosing a design 
value of AhlU as large as 0.45 we were anticipating an iterative approach. 

ih 
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observed amplitude of the dip (Au/U + -0.02). Closer agreement could 
not be expected because the error AE, being caused by a sag in some of the 
rods rather than a bodily displacement, is not independent of z ,  and the 
resulting distortion of the flow from that of nearly-uniform shear is essentially 
three-dimensional and must resemble the effect of a wake embedded in the 
stream. Indeed, a comparison between the observed velocity profiles at 
z/h = 0 and x / h  = -0.2 displayed in figure 6 for x /h  = 3 shows that the 
dip had almost disappeared at z/h = - 0.2 (4 in. from the central plane 
of the tunnel). 

I 

o.q % “O 0 0.1 0.2 0.3 0.4 05 0.6 07 0’8 

Figure 6. Velocity profiles for z = 0 and z/h = -0.2 measured at x/h = 3. 

The above calculation provides a stricture on the remark made in the 
Introduction that it might not be difficult (in principle) to devise empirically 
the correct spacing between the rods, because the misalignment that gave 
rise to the error 0.015 in f amounted only to 0.02 in. The chance of adjusting 
by experiment the positions of 62 rods, as used here, to an accuracy 
significantly greater than 0-02 in. seems very remote ! 

The velocity profiles of figure 5 exhibit complete departure from linearity 
near the walls, a behaviour evidently to be associated with the presence 
of the boundary layers. In  this respect, two points require comment. 
In  the first place, near each wall the velocity reaches a distinct peak which 
tends to subside with increasing distance from the grid. Secondly, the 
peak near y = h occurs closer to the wall than that near y = 0. The 
appearance of these velocity peaks is due to the accelerating action of the 
pressure drop across the grid on the fluid in the boundary layer which, by 
virtue of its reduced velocity, suffers a smaller change in total pressure on 
passing through the grid than fluid in the main stream. Since the change 
in total pressure diminishes progressively as the wall is approached, whereas 
the static pressure is constant, the velocity in the boundary layer would, 
in the absence of shearing stresses, increase towards the wall. This 
tendency is however resisted by the shearing stresses and wall friction, 
with the result that a maximum velocity occurs in the outer part of the 
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boundary layer With increasing distance from the grid, the shearing 
stresses smooth out the velocity peak, as can be seen in figure 5 .  The 
difference between the positions of the velocity maxima on the top and 
bottom walls is obviously a consequence of the difference in boundary 
layer thickness; for the boundary layer on the upper wall is subjected to 
a favourable pressure gradient whereas the pressure gradient on the lower 
wall is adverse, as is evident from the calculated wall pressure distribution 
shown in figure 7. The observed difference in boundary layer thickness 
on the upper and lower walls agreed quite well with a rough calculation 
based on Truckenbrodt's method (Schlichting 1955) using the pressure 
distributions of figure 7. 

T 

Figure 7. Calculated pressure distributions on the top and bottom wails of the tunnel; 
hh/U = 0.45, KO = 1.15. 

Ostensibly there is no 
systematic change in the rate of shear between xlh = 1.2 and xlh = 4.2, 
and even the small irregularities in the velocity profile appear to suffer 
no appreciable decay. This is not entirely surprising, because a uniform 
shear flow would be expected to persist almost indefinitely if, as is likely, 
the turbulence generated at the grid gives rise to an approximately constant 
eddy viscosity. All modification to the rate of shear would then be confined 
to regions excluded from the action of a uniform shearing stress, that is, 
to the boundary layers on the tunnel walls, which only gradually encroach 
on the main stream. 
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A final remark may be made on figure 5. 


